$0.12 \times 0.10 \times 0.06 \; \rm mm$

4307 measured reflections 2860 independent reflections 2497 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.017$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(4-Chlorobenzylidene)-3,4,5trimethoxybenzohydrazide

Yu-Min Wang, Zhen-Dong Zhao,* Yu-Xiang Chen and Liang-Wu Bi

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Naniing 210042. People's Republic of China Correspondence e-mail: minwangyu@126.com

Received 19 November 2008; accepted 21 November 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.128; data-to-parameter ratio = 13.1.

The title compound, C₁₇H₁₇ClN₂O₄, was synthesized from 3,4,5-trimethoxybenzohydrazide and 4-chlorobenzaldehyde. In the crystal structure, packing is stabilized by intramolecular $C-H\cdots O$ and intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen-bonding interactions.

Related literature

For related literature, see: Yang et al. (1996); Nawar et al. (2000); Gardner et al. (1991); Labouta et al. (1989); Wang et al. (2008); Allen et al. (1987).

radiation

Experimental

Crystal data

$C_{17}H_{17}CIN_2O_4$	$\alpha = 101.055 \ (7)^{\circ}$
$M_r = 348.78$	$\beta = 92.362 \ (7)^{\circ}$
Triclinic, P1	$\gamma = 101.459 \ (7)^{\circ}$
a = 5.119 (2) Å	V = 816.9 (7) Å ³
b = 8.210 (4) Å	Z = 2
c = 20.276 (9) Å	Mo $K\alpha$ radiation

$\mu = 0.26 \text{ mm}^{-1}$ T = 273 (2) K

Data collection

Bruker APEX CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.970, \ T_{\rm max} = 0.985$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 218 parameters $wR(F^2) = 0.128$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.59 \text{ e} \text{ Å}^{-3}$ S = 1.03 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 2860 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1^{i}$	0.86	2.18	2.943 (3)	147
C8−H8C···O4	0.96	2.26	2.896 (4)	123
$C11-H11\cdots O1^{i}$	0.93	2.43	3.145 (3)	134
$C16-H16\cdots O1^{ii}$	0.93	2.57	3.368 (3)	144

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Fund of Jiangsu Province (No. BK2006011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2683).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1997). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Gardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514-1530.
- Labouta, I. M., Hassan, A. M., Aboulwafa, O. M. & Kader, O. (1989). Monatsh. Chem. 120, 571-574.
- Nawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1-8.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y.-M., Zhao, Z.-D., Chen, Y.-X. & Bi, L.-W. (2008). Acta Cryst. E64, o1009
- Yang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749-3753.

supplementary materials

Acta Cryst. (2008). E64, o2459 [doi:10.1107/S1600536808039044]

(E)-N'-(4-Chlorobenzylidene)-3,4,5-trimethoxybenzohydrazide

Y.-M. Wang, Z.-D. Zhao, Y.-X. Chen and L.-W. Bi

Comment

3,4,5-Trimethoxybenzohydrazide and their deviatives show moderate fungicidal and anti-bacterial activities (Gardner *et al.*, 1991). The antibacterial activity of formylhydrazines and formylhydrazones has been reported by Labouta *et al.* (1989). Many derivatives of formylhydrazines have interesting biological properties. So we synthesized several derivatives of 3,4,5-trimethoxybenzohydrazide. In our previous paper we have reported the crystal structure of (*E*)—*N*⁻(2-hydroxybenzylidene)-3,4,5-trimethoxybenzohydrazide (Wang *et al.*, 2008). Now we synthesized the title compound (I) and report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. All bond lengths and angles in (I) are normal (Allen *et al.*, 1987). In the crystal structure, there exist intramolecular C—H···O, and intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1, Fig. 2).

Experimental

An ethanol solution (50 ml) of 3,4,5-trimethoxybenzohydrazide (0.01 mol) and 4-chlorobenzaldehyde (0.01 mol) was refluxed and stirred for 2 h; the mixture was cooled and the resulting solid product, (I), was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in THF.

Refinement

All H atoms were placed geometrically with C—H= 0.93–0.96 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the carrier atom.

Figures

Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2. Packing diagram of the title structure.

(E)-N'-(4-Chlorobenzylidene)-3,4,5-trimethoxybenzohydrazide

Crystal data	
C ₁₇ H ₁₇ ClN ₂ O ₄	Z = 2
$M_r = 348.78$	$F_{000} = 364$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.418 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.119 (2) Å	Cell parameters from 2557 reflections
b = 8.210 (4) Å	$\theta = 2.6 - 28.3^{\circ}$
c = 20.276 (9) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 101.055 \ (7)^{\circ}$	T = 273 (2) K
$\beta = 92.362 \ (7)^{\circ}$	Block, yellow
$\gamma = 101.459 \ (7)^{\circ}$	$0.12 \times 0.10 \times 0.06 \text{ mm}$
$V = 816.9 (7) \text{ Å}^3$	

Data collection

Bruker APEX CCD area-detector diffractometer	2860 independent reflections
Radiation source: fine-focus sealed tube	2497 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 273(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.970, \ T_{\max} = 0.985$	$k = -9 \rightarrow 9$
4307 measured reflections	$l = -18 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.4783P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.128$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
2860 reflections	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$
218 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.060 (5)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.98386 (15)	-0.10593 (8)	0.26691 (3)	0.0637 (2)
01	0.5118 (3)	0.4117 (2)	0.66278 (7)	0.0510 (4)
02	0.5848 (4)	0.5136 (2)	0.92020 (8)	0.0634 (5)
O3	0.9795 (4)	0.7795 (3)	0.95374 (9)	0.0883 (7)
O4	1.3253 (4)	0.8754 (2)	0.86389 (9)	0.0703 (6)
N1	0.8782 (3)	0.3395 (2)	0.57654 (8)	0.0396 (4)
N2	0.9449 (3)	0.4260 (2)	0.64227 (8)	0.0393 (4)
H2	1.1099	0.4630	0.6572	0.047*
C1	0.8360 (4)	0.5329 (2)	0.75470 (9)	0.0365 (4)
C2	0.6692 (4)	0.4815 (3)	0.80214 (10)	0.0408 (5)
H2A	0.5169	0.3961	0.7888	0.049*
C3	0.7298 (4)	0.5574 (3)	0.86935 (10)	0.0457 (5)
C4	0.9504 (5)	0.6916 (3)	0.88879 (11)	0.0520 (6)
C5	1.1177 (4)	0.7419 (3)	0.84062 (11)	0.0480 (5)
C6	1.0627 (4)	0.6603 (3)	0.77344 (10)	0.0412 (5)
H6	1.1771	0.6909	0.7414	0.049*
C7	0.3631 (6)	0.3744 (4)	0.90386 (13)	0.0673 (7)
H7A	0.2345	0.3994	0.8736	0.101*
H7B	0.2821	0.3549	0.9443	0.101*
H7C	0.4225	0.2748	0.8827	0.101*
C8	1.2015 (8)	0.7925 (6)	0.99320 (16)	0.1086 (14)
H8A	1.2011	0.6860	1.0061	0.163*
H8B	1.2073	0.8791	1.0328	0.163*
H8C	1.3554	0.8220	0.9690	0.163*
C9	1.5185 (5)	0.9198 (3)	0.81913 (13)	0.0563 (6)
H9A	1.5826	0.8211	0.7990	0.084*
H9B	1.6651	1.0047	0.8435	0.084*
H9C	1.4392	0.9639	0.7845	0.084*
C10	0.7487 (4)	0.4520 (2)	0.68292 (10)	0.0363 (4)
C11	1.0749 (4)	0.3316 (3)	0.54076 (10)	0.0421 (5)
H11	1.2448	0.3915	0.5585	0.050*
C12	1.0395 (4)	0.2302 (3)	0.47225 (10)	0.0378 (4)
C13	1.2396 (5)	0.2560 (3)	0.42946 (11)	0.0527 (6)

supplementary materials

H13	1.3898	0.3424	0.4438	0.063*
C14	1.2205 (5)	0.1556 (3)	0.36576 (11)	0.0542 (6)
H14	1.3553	0.1749	0.3371	0.065*
C15	1.0009 (5)	0.0277 (3)	0.34555 (10)	0.0433 (5)
C16	0.7968 (5)	-0.0006 (3)	0.38638 (12)	0.0540 (6)
H16	0.6471	-0.0871	0.3717	0.065*
C17	0.8181 (4)	0.1019 (3)	0.44969 (11)	0.0488 (5)
H17	0.6803	0.0841	0.4777	0.059*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0910 (5)	0.0539 (4)	0.0397 (3)	0.0153 (3)	0.0094 (3)	-0.0077 (3)
01	0.0337 (8)	0.0722 (11)	0.0394 (8)	0.0075 (7)	0.0002 (6)	-0.0034 (7)
O2	0.0650 (11)	0.0788 (12)	0.0361 (9)	-0.0015 (9)	0.0168 (7)	0.0009 (8)
O3	0.0691 (12)	0.1269 (19)	0.0400 (10)	-0.0058 (12)	0.0062 (9)	-0.0264 (11)
O4	0.0600 (11)	0.0767 (12)	0.0477 (10)	-0.0183 (9)	0.0098 (8)	-0.0190 (8)
N1	0.0417 (9)	0.0440 (9)	0.0293 (8)	0.0095 (7)	0.0003 (7)	-0.0018 (7)
N2	0.0339 (8)	0.0504 (10)	0.0288 (8)	0.0084 (7)	-0.0004 (6)	-0.0029 (7)
C1	0.0368 (10)	0.0400 (10)	0.0318 (10)	0.0128 (8)	0.0031 (8)	0.0002 (8)
C2	0.0386 (11)	0.0433 (11)	0.0361 (11)	0.0070 (9)	0.0043 (8)	-0.0009 (9)
C3	0.0458 (12)	0.0555 (13)	0.0341 (11)	0.0120 (10)	0.0102 (9)	0.0027 (9)
C4	0.0493 (12)	0.0641 (15)	0.0329 (11)	0.0084 (11)	0.0046 (9)	-0.0106 (10)
C5	0.0415 (11)	0.0534 (13)	0.0393 (11)	0.0042 (10)	0.0022 (9)	-0.0080 (10)
C6	0.0380 (11)	0.0472 (12)	0.0343 (10)	0.0081 (9)	0.0062 (8)	-0.0015 (9)
C7	0.0720 (17)	0.0708 (17)	0.0523 (15)	-0.0019 (14)	0.0221 (13)	0.0100 (13)
C8	0.092 (2)	0.168 (4)	0.0460 (17)	0.008 (2)	-0.0029 (16)	-0.005 (2)
C9	0.0467 (13)	0.0550 (14)	0.0567 (14)	-0.0008 (10)	0.0047 (11)	-0.0024 (11)
C10	0.0349 (10)	0.0385 (10)	0.0331 (10)	0.0072 (8)	0.0017 (8)	0.0020 (8)
C11	0.0402 (11)	0.0479 (12)	0.0333 (10)	0.0037 (9)	0.0022 (8)	0.0024 (9)
C12	0.0421 (11)	0.0393 (10)	0.0314 (10)	0.0108 (8)	0.0033 (8)	0.0037 (8)
C13	0.0483 (13)	0.0572 (14)	0.0417 (12)	-0.0043 (10)	0.0096 (10)	-0.0020 (10)
C14	0.0599 (14)	0.0586 (14)	0.0400 (12)	0.0062 (11)	0.0178 (10)	0.0033 (10)
C15	0.0584 (13)	0.0389 (11)	0.0329 (10)	0.0161 (9)	0.0037 (9)	0.0019 (8)
C16	0.0534 (13)	0.0481 (13)	0.0493 (13)	-0.0013 (10)	0.0046 (10)	-0.0054 (10)
C17	0.0457 (12)	0.0510 (13)	0.0425 (12)	0.0015 (10)	0.0118 (9)	-0.0013 (10)

Geometric parameters (Å, °)

Cl1—C15	1.742 (2)	С7—Н7А	0.9600
O1—C10	1.223 (2)	С7—Н7В	0.9600
O2—C3	1.357 (3)	С7—Н7С	0.9600
O2—C7	1.419 (3)	C8—H8A	0.9600
O3—C8	1.337 (4)	C8—H8B	0.9600
O3—C4	1.362 (3)	C8—H8C	0.9600
O4—C5	1.361 (3)	С9—Н9А	0.9600
O4—C9	1.411 (3)	С9—Н9В	0.9600
N1—C11	1.270 (3)	С9—Н9С	0.9600
N1—N2	1.379 (2)	C11—C12	1.460 (3)

N2—C10	1.349 (3)	C11—H11	0.9300
N2—H2	0.8600	C12—C17	1.379 (3)
C1—C2	1.383 (3)	C12—C13	1.380 (3)
C1—C6	1.383 (3)	C13—C14	1.381 (3)
C1—C10	1.489 (3)	С13—Н13	0.9300
C2—C3	1.380 (3)	C14—C15	1.365 (3)
C2—H2A	0.9300	C14—H14	0.9300
C3—C4	1.395 (3)	C15—C16	1.371 (3)
C4—C5	1.393 (3)	C16—C17	1.381 (3)
C5—C6	1.388 (3)	С16—Н16	0.9300
С6—Н6	0.9300	С17—Н17	0.9300
C3—O2—C7	117.98 (18)	O3—C8—H8C	109.5
C8—O3—C4	120.7 (3)	H8A—C8—H8C	109.5
C5-04-C9	118.23 (18)	H8B—C8—H8C	109.5
C11—N1—N2	114 90 (17)	O4—C9—H9A	109.5
C10—N2—N1	119 35 (16)	04—C9—H9B	109.5
C10—N2—H2	120.3	H9A—C9—H9B	109.5
N1—N2—H2	120.3	04—C9—H9C	109.5
C2-C1-C6	121.06 (18)	Н9А—С9—Н9С	109.5
C_{2} — C_{1} — C_{10}	116 43 (18)	H9B-C9-H9C	109.5
C6-C1-C10	122.40 (18)	01-C10-N2	122.65 (18)
C3 - C2 - C1	119.68 (19)	01	121.16 (17)
$C_3 - C_2 - H_2 A$	120.2	N2-C10-C1	11620(17)
C1 - C2 - H2A	120.2	N1-C11-C12	121 29 (19)
02 - C3 - C2	124 6 (2)	N1-C11-H11	119.4
02 - C3 - C4	115 37 (19)	C12—C11—H11	119.4
$C_2 - C_3 - C_4$	120.01 (19)	C17 - C12 - C13	118 34 (19)
03-C4-C5	122.0(2)	C17 - C12 - C11	122.11(18)
03 - C4 - C3	1122.0(2) 1180(2)	C_{13} C_{12} C_{11}	119 44 (19)
$C_{5} - C_{4} - C_{3}$	119.73 (19)	C_{12} C_{13} C_{14}	121.1 (2)
04 - 05 - 06	124 2 (2)	C12 - C13 - H13	119.4
04 - C5 - C4	115 72 (19)	C14—C13—H13	119.4
C_{6}	1200(2)	C15-C14-C13	119.0(2)
C1 - C6 - C5	119 33 (19)	$C_{15} - C_{14} - H_{14}$	120.5
C1—C6—H6	120.3	C13—C14—H14	120.5
C5-C6-H6	120.3	C14-C15-C16	120.5 121.5(2)
Ω^2 Γ^7 H^7 Λ	109.5	C14-C15-C11	121.3(2) 119 15 (17)
02—C7—H7B	109.5	C16-C15-C11	119.10(17) 119.30(17)
H7A - C7 - H7B	109.5	C_{15} $-C_{16}$ $-C_{17}$	119.30(17)
Ω^2 Γ^7 H^7C	109.5	$C_{15} - C_{16} - H_{16}$	120.7
H7A - C7 - H7C	109.5	C17-C16-H16	120.7
H7B_C7_H7C	109.5	C_{12} C_{17} C_{16}	120.7 121.3(2)
Ω_{3} C_{8} H_{8A}	109.5	C12 - C17 - H17	119.3
03-C8-H8B	109.5	C16—C17—H17	119.3
H8A—C8—H8B	109.5		117.5
C_{11} N1 N2 C_{10}	175 22 (19)	04-65-66-61	-175.8(2)
C6-C1-C2-C3	-0.3(3)	C4-C5-C6-C1	22(3)
$C_1 - C_1 - C_2 - C_3$	-176 58 (19)	N1 - N2 - C10 - O1	-50(3)
010 01 02 03	1,0.20 (17)	111 112 010 01	2.0 (3)

supplementary materials

C7—O2—C3—C2	3.4 (4)	N1-N2-C10-C1	174.86 (16)
C7—O2—C3—C4	-178.0 (2)	C2-C1-C10-O1	33.9 (3)
C1—C2—C3—O2	-178.0 (2)	C6-C1-C10-O1	-142.3 (2)
C1—C2—C3—C4	3.4 (3)	C2-C1-C10-N2	-145.93 (19)
C8—O3—C4—C5	-63.6 (4)	C6-C1-C10-N2	37.9 (3)
C8—O3—C4—C3	122.7 (3)	N2-N1-C11-C12	173.85 (18)
O2—C3—C4—O3	-8.6 (3)	N1-C11-C12-C17	-19.4 (3)
C2—C3—C4—O3	170.1 (2)	N1-C11-C12-C13	164.4 (2)
O2—C3—C4—C5	177.6 (2)	C17-C12-C13-C14	-0.4 (4)
C2—C3—C4—C5	-3.7 (4)	C11-C12-C13-C14	176.0 (2)
C9—O4—C5—C6	-9.0 (4)	C12-C13-C14-C15	-0.8 (4)
C9—O4—C5—C4	172.9 (2)	C13—C14—C15—C16	1.5 (4)
O3—C4—C5—O4	5.4 (4)	C13-C14-C15-Cl1	-176.79 (19)
C3—C4—C5—O4	179.0 (2)	C14-C15-C16-C17	-1.0 (4)
O3—C4—C5—C6	-172.7 (2)	Cl1—C15—C16—C17	177.36 (19)
C3—C4—C5—C6	0.9 (4)	C13—C12—C17—C16	1.0 (3)
C2-C1-C6-C5	-2.5 (3)	C11—C12—C17—C16	-175.3 (2)
C10-C1-C6-C5	173.5 (2)	C15-C16-C17-C12	-0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2···O1 ⁱ	0.86	2.18	2.943 (3)	147
С8—Н8С…О4	0.96	2.26	2.896 (4)	123
C11—H11···O1 ⁱ	0.93	2.43	3.145 (3)	134
C16—H16···O1 ⁱⁱ	0.93	2.57	3.368 (3)	144

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

